ZLAN6408I-4AI-4AO

4-channel IO controller

-1:RS485 to AI/AO

-3: Ethernet to RS485/AI/AO

Version information

The following changes have been made to the document:

Modification record

DATE	Version	Document number	Confidentiality	Modify
	number		level	content
2025-08-15	Rev.1	ZL DUI 202508315.1.0	Public	Release
				11010000

Ownership information

This document may not be redistributed in whole or in part in paper or electronic form without the consent of the copyright owner.

This document is only used to assist readers in using the product, and Shanghai Zlan Company is not responsible for any loss or error caused by the use of the information in this document. The products and texts described in this document are under constant development and improvement. Shanghai Zlan Information Technology Co., Ltd. reserves the right to modify this document without notice to the user.

Catalogue

1. OVERVIEW	4
2. Functional Features	7
3. TECHNICAL PARAMETERS	7
4. HARDWARE DESCRIPTION	8
5. AI/AO FUNCTION DESCRIPTION	11
5.1 Connect the device using the Vircom tool	11
5.2 Modbus Registers	12
5.3 AI Usage Instructions	
5.4 AO Instructions for Use	14
5.5 AO Calibration parameters	15
5.6 Active Reporting by AI	16
6. CONFIGURATION AND USAGE METHOD	17
6.1 ZLAN6408I-1(485)	19
6.2 ZLAN6408I-3(Ethernet)	19
APPENDIX 1: GENERAL PARAMETER TABLE	25
AFTER-SALES SERVICE AND TECHNICAL SUPPORT	30

1. Overview

ZLAN6408I-4AI-4AO is a small-sized and cost-effective AI and AO product developed by Shanghai Zhuolan. It supports analog input and output and is specifically designed for industrial automation scenarios.

This device supports the acquisition of analog input signals and can also achieve analog output control. Its stable signal processing capability can meet the monitoring and execution requirements of various IO signals in industrial sites, providing reliable underlying signal interaction support for automation systems. Meanwhile, the 6408I supports multiple combinations, which can meet the diverse needs on site. For relevant combinations, please refer to the following figure.

Supports multiple combinations

ZLAN6408I-3-4DI-4DO

Al accuracy

sion

With "I", it is 16-bit precision AI; without "I", it is 12-bit preci-

Communication interface

-3 is Ethernet +485 -1 is pure 485

-8 is 4G

Interface 1 mode

DI: Digital input, DO: Digital output, AI: Analog input,

AO: Analog output

Interface 2 mode

DI: Digital input, DO: Digital output, AI: Analog input,

AO: Analog output

Model	Name	Communication interface	DI	DO	Al	AO	Al accuracy
6408I-1-4DI-4DO	RS485 4-channel DI DO	RS485	1	1	×	×	1
6408I-1-4AI-4AO	RS485 4-channel AI AO	RS485	×	×	√	1	16 bits
6408I-1-2DI-2DO	RS485 2-channel DI DO	RS485	1	1	×	×	1
6408I-1-2AI-2AO	RS485 2-channel DI DO	RS485	×	×	1	1	16 bits
6408I-3-4DI-4DO	RS485 4-channel DI DO	Ethernet/RS485	1	1	×	×	1
6408I-3-4AI-4AO	RS485 4-channel AI AO	Ethernet /RS485	×	×	1	1	16 bits
6408I-3-4AI-0AO	Network Port 4 Al	Ethernet /RS485	×	×	1	×	16 bits
6408I-3-2AI-2AO	Network Port 2 Al 2AO	Ethernet /RS485	×	×	√	1	16 bits
6408I-3-2DI-2DO	Network Port 2DI 2DO	Ethernet /RS485	1	1	×	×	1
6408-1-4DI-4AI	RS4854-channel DI AI	RS485	1	×	1	×	12 bits
6408-8-4DI-4AI	4G 4-channel DIAI	4G/RS485	1	×	1	×	12 bits

Other combinations (any combination from 0 to 4) such as OAI-2AO, 2AI-0AO (if needed, please contact customer service)

The 6408I supports any combination of 0 to 4 digital input and output channels

The 6408I supports any combination of 16-bit analog inputs from 0 to 4 channels

03 The 6408 supports 12-bit analog input and 4-channel digital input

Figure 1 Selection diagram of ZLAN6408I gateway

For instance, the 6408I-1-4AI-4AO supports 4-channel AI analog quantity acquisition and 4-channel AO analog quantity output. IO can be read and controlled through the RS485 interface.

The 6408I-3-2AI-2AO supports 2-channel AI analog quantity acquisition and 2-channel AO analog quantity output. IO can be read and controlled through the Ethernet /RS485-IO interface (as shown in the lower right corner of the following figure), and communication can also be conducted with the slave device connected via Ethernet and the 485-ETH port (as shown in the lower right corner of the following figure).

The 6408I series supports any form of (0 to 4 channels)AI/AO or DI/DO combination. If needed, please contact customer service.

Figure 2 Appearance view of the ZLAN6408I-AI-AO gateway

The AI input supports 4-20mA current input (default shipment), with an ADC accuracy of 16 bits. The attributes of the AI can be modified to 0-5V voltage, 0-10V voltage type, resistance type, etc. according to requirements. The AO output supports

4-20mA output, with a DAC accuracy of 16 bits. (Factory confirmation is required. Any modifications need to be returned to the factory.

2. Functional Features

- 1. Supports up to 4 channels of AI analog input, 4 channels of AO analog output, and 16-bit ADC/DAC precision.
- 2. The serial port supports baud rates ranging from 1200 to 115200, 8 data bits, no parity, odd parity, and even parity, and 1 stop bit.
- 3. The 6408I-3-AI-AO supports Ethernet ports and can communicate with third-party 485 slave devices attached to 485-ETH.
- 4. 6408I-3-AI-AO supports ZLMB and custom Modbus RTU to JSON conversion functions.
- 5. The 6408I-3-AI-AO supports edge computing functions, including data over-limit alarm, data translation and scaling calculation, data change upload, and device offline alarm, etc.
- 6. The 6408I-3-AI-AO supports network port configuration and parameter viewing via ZLVircom software.

3. Technical parameters

Appearance	
Size:	Length × width × height=9.4cmx6.5cmx2.5cm

Serial port parameters

6408I-1:485-IO

6408I-3:485-IO、485-ETH

Baud rate: The default baud rate is 115200bps, which can be modified through software or instructions.

Data bits: 8 bits.

Check bit: No check, odd check, even check.

Stop bit: 1 bit

Software

Network	MODBUS TCP/MQTT/JSON/HTTP						
Protocol							
RS485 Protocol	MODBUS RTU						
AI input /AO out	tput form						
AI input							
Current input: 4-20n	nA						
Voltage input: 0-5V,	0-10V (customization required)						
Resistance input:	0-10K, resistance-type temperature and humidity sensors, etc.						
(customization requi	ired)						
AO output:	AO output:						
Current output: 4-20	dmA						
Power supply							
Stable operating s	tatus: 200mA@12V						
6408I-3 (Etherne	et) parameters						
Network port	It can be connected to 10/100M adaptive Ethernet.						
Environmental r	equirements						
Operating	-40~85℃						
temperature							
Storage	-45~120°C						
temperature							
Humidity range	5 to 95% relative humidity						

4. Hardware Description

The front view of the data acquisition gateway is shown in Figure 3.

Figure 3 Front view of ZLAN6408I-AI-AO

The gateway adopts an anti-radiation metal casing with two hanging ears on both sides, which can be fixed with screws.

Panel light

Indicator light	Color	Remarks
POWER	red	The equipment is powered on normally
LINK	Green/Blue	Green indicates an Ethernet
		connection/blue indicates a link has
		been established
ACT1	Green/Blue	Green: RS485-NET interface data
		output
ACT2	Green/Blue	Blue: RS485-NET interface data input
ACT3	Green/Blue	Green: Data received by the network
		end

Figure 4 Interface Figure 1

The interface in front of the acquisition gateway is shown in Figure 4

- 1. 1.AO1 to AO4:4 analog output channels, with a precision of 16 bits, and the default is 4-20mA analog output.
- 2. 2. Network interface: This interface is a remote control communication method of Ethernet, which varies depending on the sub-model. Among them, 6408I-1 does not support network interfaces and only has local RS485 control.

The interface behind the acquisition gateway is shown in Figure 5

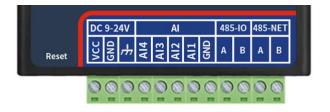


Figure 5 Interface Figure 2

- 1. Power supply: Terminal block input, input voltage DC+9V to +24VDC.
- 2. GND: The same as the negative terminal of the power supply.
- 3. All to Al4: 4-channel analog input.

Analog input

4-channel analog input: With an accuracy of 16 bits, the default is 4-20mA analog input. For other inputs, select the extended model

- 1) Current signal input: 4~20mA.
- 2) Voltage signal input (6408I-3-4AI 5V-4AO) : 0-5V.
- 3) Voltage signal input (6408I-3-4AI10V-4AO) : 0 to 10V.
- 4) Resistive impedance input: such as 0~10k or resistive temperature and humidity sensors, etc.

Both the voltage and current are relative to GND.

4. RS485 interface: 2 RS485 signal inputs. The A and B of 485-IO can be connected to the Modbus RTU master station to read the data of AI. The A and B of 485-NET can be connected to the 485 instrument slave station. Note that they should not be connected to the power supply.

5. AI/AO Function Description

5.1 Connect the device using the Vircom tool

The gateway configures IO parameters via the RS485 interface. Power on the device and connect the A and B interfaces in RS485-IO. Open the main interface device management with VIRCOM software and directly click the "IO Controller" button.

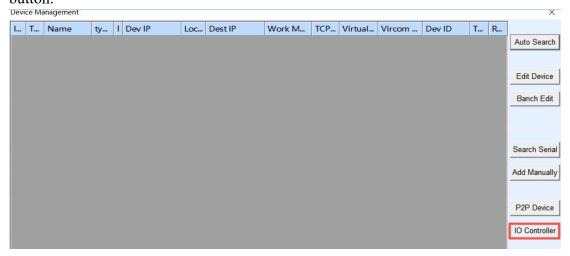


Figure 6 How to enter the IO controller dialog box

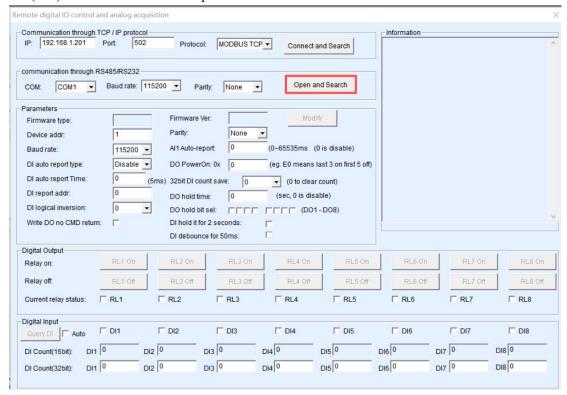


Figure 7 IO Controller Dialog Box

Select the correct COM port and click "Open and Search" to communicate with the device. There is no need to select the baud rate. If you have set a check bit before, please select the corresponding check bit and then click "Open and Search". After opening the com port, the parameters of the device are obtained through the Modbus RTU command of the software.

After the device obtains the parameters, they will be displayed in the dialog box. Later, parameters can be modified, and tests such as AI reading can be conducted.

5.2 Modbus Registers

The serial port supports Modbus RTU instructions. The specific register and address ranges are as follows:

Function	Function		Address range
code			
04	Read AI		0~3
03	Read the	basic	63~67

Table 1. General Table of Modbus Registers

	parameters	
03	Read the extended	68~162
	parameter	
06	Set parameters	63~67
06	Set the extended	68~162
	parameters	
06	Set AO	768~771
16	Set basic parameters	63~67
16	Set the extended	68~162
	parameters	

5.3 AI Usage Instructions

By using the 04 instruction of Modbus to read the values in registers 0 to 3, the values of AI1 to AI4 can be obtained. The data is stored in big-endian format.

Number	of	1	1	1	1	1	1	1	1
bytes									
Name		Device	04	Start	Low start	Length	Low	High	Low
		Address		address	address	height	length	CRC	CRC
				high					

For example, the Modbus RTU instruction for reading the value of AI1 is: For example, the Modbus RTU instruction for reading the value of AI1 is

Return-> 01 04 02 01 82 38 c1

The Modbus TCP instruction is:

Send-> 00 00 00 00 00 06 01 04 00 00 00 01

Return-> 00 00 00 00 00 05 01 04 02 01 82

The specific usage method of the returned data 01 82 here is related to the type of AI. If 01 82 is converted to decimal, it will be Vin=386. The calculation formulas for different types of AI are as follows:

- 5V: True voltage value = (Vin/ 1024)*5=1.8848;
- 10V: True voltage value = (Vin/1024)*10=3.7695;
- $4\sim20$ mA: True current = (Ain / 1024)*5/200*1000=9.4238;

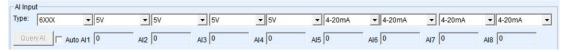


Figure 8 AI reading in the IO controller dialog box

After Vircom successfully connects to the device, click "Query AI Status" to query the AI value. You can also click "Auto" to query once per second. Before making a query, you need to make a selection based on the purchased model first. After selecting the model, the analog interface types of AI1 to AI4 will be automatically configured according to the standard configuration. Thus, the real current value of this interface can be displayed in the numerical dialog box.

5.4 AO Instructions for Use

By using the 06 instruction of Modbus to set the values of registers 768 to 771, the output values of AO1 to AO4 can be set. The hexadecimal representation of each register address is as follows: 03 00 (channel 1), 03 01 (channel 2), 03 02 (channel 3), and 03 03 (channel 4).

AO should be input as an unsigned integer, in big-endian format, and always retain three decimal places.

Byte count	1	1	1	1	1	1	1	1
Name	Equipment	06	The starting	The starting	High	Low	CRC	CRC
	address		address is	address is	data	data	high	low
			high	low				

Example 1: The Modbus RTU command for setting the output of AO1 to 20mA

Send-> 01 06 03 00 4e 20 bd f6

Return-> 01 06 03 00 4e 20 bd f6

Among them:

is

01 is the device address, 06 is the function code, 03 00 is the address of the first AO register, 4e 20 is the big-endian format data, with a decimal value of 20000,

retaining three decimal places, indicating that the AO value is set to 20.000mA, and bd f6 is the CRC check code.

Example 2: The Modbus RTU instruction for setting the output of AO4 to 16.660mA is:

Send-> 01 06 03 03 41 14 49 d1 Return-> 01 06 03 03 41 14 49 d1

Among them:

01 is the device address, 06 is the function code, 03 is the fourth AO address, 41 is the big-endian format data, with a decimal value of 16660, retaining three decimal places, indicating that the AO value is set to 16.660mA, and 49 d1 is the CRC check code.

5.5 AO Calibration parameters

When the ZLAN6408I-AI-AO series leaves the factory, the output of AO will be calibrated to ensure the accuracy of the analog quantity output. If the set value deviates significantly from the actual output value during the user's usage, the output can be recalibrated by changing the value of the register. At the same time, we also have dedicated parameter calibration software. If you need it, you can contact customer service to obtain it.

The calibration method via Modbus instructions is as follows:

The parameter calibration of AO uses the two-point calibration method. By obtaining two sets of set values and actual values, two calibration coefficients, namely the slope and the intercept, are calculated. Expressed in a linear equation with two variables, it is y=kx+b, where y is the set value, x is the actual output value, k is the slope, and b is the intercept.

The 4-channel AO output slope and intercept of ZLAN6408I-AI-AO are stored in the register at address 6C-73. If it is a 2-channel AO, the address is 6C-6F. Every two registers correspond to one calibration coefficient, with the first register being the slope and the second register being the intercept. For instance, 6C corresponds to the slope of AO1, and 6D corresponds to the intercept of AO1. 6E corresponds to the

slope of AO2, and 6F corresponds to the intercept of AO2.

Both the slope and intercept in flash are integer numbers. The data is stored in little-endian format and will be automatically divided by 10,000 when used. Therefore, to set the slope of AO1 to 1.0000, write a signed integer of 10000 in hexadecimal: 0x2710 to register 6C of AO1.

For example, to calibrate the first AO channel, the following steps are required:

- 1. Reset the calibration coefficient: Set the slope to 1.0 and the intercept to 0, and use the 06 command of Modbus for the Settings. Set the slope: send -> 01 06 00 6c 10 27 04 0d (since the slope is to be set to 1, the value should be written as 10000, that is, 0x2710. Also, since the data is stored in little-endian format, the data bit is filled as 10 27); Set the intercept: 01 06 00 6d 00 00 18 17.
- 2. Read the two sets of actual output values after reset: for example, when the set value is 20mA, the actual output is 19.53mA; When the set value is 10mA, the actual output is 9.77mA.
- 3. By substituting the two sets of set values and the corresponding actual output values into the equation, the slope k is calculated to be 1.0246, magnified 10,000 times to 10246, and in hexadecimal, it is 0x2806. The intercept b is -0.0103, and when magnified 10,000 times, it becomes -103. Since it is a signed integer, all hexadecimal values are 0x8067.
- 4. The calculated slope and intercept are written into the register via Modbus's 06 or 16 instruction (Note: The data is stored in little-endian format) to complete the calibration.
- 5. Reset the AO value. After calibration, the set value should be consistent with the actual output value.

5.6 Active Reporting by AI

AI H The active reporting function of AI enables the collected analog quantities to be automatically sent to the upper computer. This method does not require the upper computer to query Modbus instructions and is very useful for network analog quantity monitoring based on the Internet.

The reporting time of analog quantities can be set. The time interval can be

selected from 0 to 65535, with the unit being ms. If 0 is set, it indicates that active reporting is not enabled. It can be directly set in the IO controller dialog box.

Parameters Firmware type:		Firmware Ver:		Modify
Device addr:	1	Parity:	None	
Baud rate:	115200 🔻	Al1 Auto-report:	1000	(0~65535ms (0 is disable)
DI auto report type:	Disable 🔻	DO PowerOn: 0x	0	(eg. E0 means last 3 on first 5 off)
DI auto report Time:	0 (5ms)	32bit DI count save	e: 0	(0 to clear count)
DI report addr:	0	DO hold time:	0	(sec, 0 is disable)
DI logical inversion:	0 🔻	DO hold bit sel:		□□□□ (D01-D08)
Write DO no CMD return:		DI hold it for 2 seco	onds:	
		DI debounce for 50	Oms:	

Figure 9 sets the AI active reporting time in the IO controller dialog box

The instructions actively uploaded by the AI are:

- When converting the protocol to Modbus RTU:01 04 10 H1 L1 H2 L2 H3 L3
 H4 L4 H5 L5 H6 L6 H7 L7 H8 L8 C1 C2.
- When converting the protocol to Modbus TCP:00 00 00 00 00 00 01 04 10
 H1 L1 H2 L2 H3 L3 H4 L4 H5 L5 H6 L6 H7 L7 H8 L8

Here, H1 and L1 represent the collection volume of A1, H2 and L2 represent the collection volume of A2, and so on. Big-endian format. The subsequent values of H5 and L5 are omitted. C1 and C2 are CRCS.

If there is a device parameter search before the AI actively reports, the AI's active reporting will pause for 5 seconds. This can prevent conflicts between the AI's active reporting and the parameter search.

6. Configuration and Usage Method

Currently, the serial port parameters include baud rate and parity. Make Settings through the "IO Controller" dialog box.

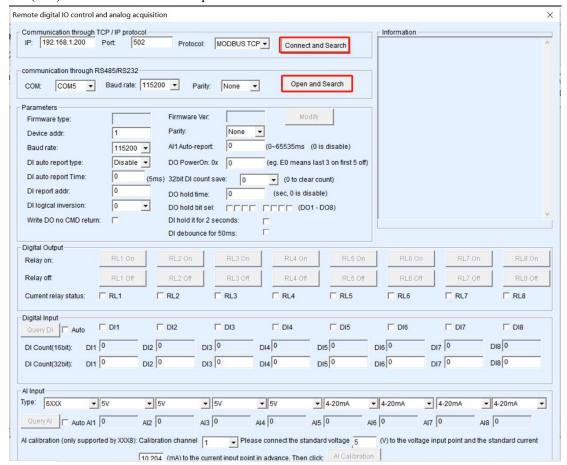


Figure 10 Configuration related to serial port parameters in the IO controller Among them, the baud rate only affects the 485-IO RS485 interface.

When communicating via serial port, there is no need to select an appropriate baud rate, as the software will automatically search for all baud rates.

However, the setting of the check bit can affect the 485-IO serial port and network module. That is, when the parameters of the ZLAN6408I series are set to have verification (not the verification method without verification), the verification bit of the network module also needs to be modified accordingly; otherwise, the "Open" button of "Network Communication" will not be opened successfully. The serial port check bit of the network module can be modified through "Device Editing" in the "Device Management" dialog box. As shown in the following figure.

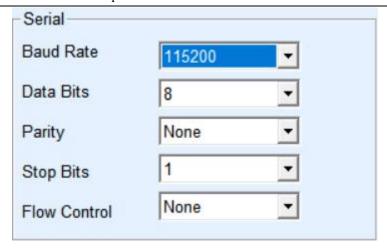


Figure 11 shows the parity bit Settings of the network module

Note: When set to the "non-unverified" mode, when the serial port is opened to search for devices, the corresponding verification mode must be selected. Otherwise, the corresponding device will not be searchable. Conversely, if the device is in the "no verification" mode, the serial port opening also needs to be searched in the "no verification" mode. That is, the serial port search does not support the automatic search of check bits. The user must specify the corresponding check method.

6.1 ZLAN6408I-1(485)

This model does not support network modules. Please directly perform read and write operations on the AI/AO of the device through the RS485-IO interface.

6.2 ZLAN6408I-3(Ethernet)

6.2.1 Configuration method

Download the ZLVircom configuration tool, connect the ZLAN6408I-3-AI-AO to the Ethernet, click the Device Management button, enter the page shown in Figure 12, and click Auto Search.

Figure 12 Ethernet configuration page

Double-click any area within the red box to enter the configuration page, as shown in the following figure.

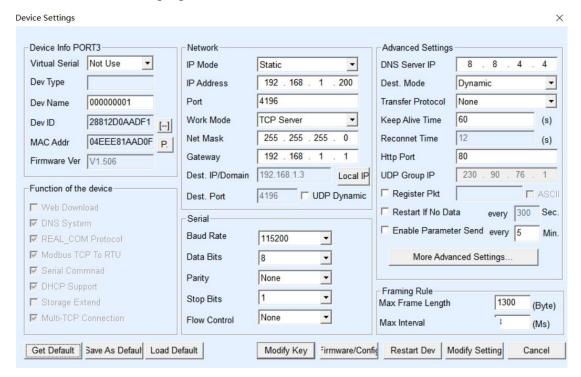


Figure 13 Configuration page

In this interface, users can set the parameters of the device. Then, by clicking "Modify Settings", the parameters will be set to the device's flash and will not be lost in case of power failure. At the same time, the device will automatically restart.

The main parameters configured here are: baud rate, data bits, and parity bits in the serial port Settings. IP address, subnet mask and gateway in network Settings; Sometimes, depending on the computer software, it is also necessary to configure the working mode of the serial port server.

The detailed meanings of other parameters are as follows:

Parameter	value range	Contents					
name							
virtual serial	none, created virtual	You can bind the current device to an existing virtual					
port	serial port	serial port. Add a COM port in Serial Port					
		Management on the home screen.					

Table 2. Parameter Meanings

Device model		Only the model of the core module is displayed
Device name	random	You can give the device an easy-to-read name, up to
		9 bytes, support Chinese names.
Device ID		factory unique ID, cannot be modified.
Firmware		Firmware version of the core module
version		
Functions		See Table 3 for features supported by the device
supported by		
the device		
IP mode	static, DHCP	Users can choose between static or DHCP (dynamic
		IP acquisition)
IP address		IP address of the serial port server
Interface	0~65535	Listening port of the serial port Server in TCP Server
		or UDP mode. If you use port 0 as the client, you are
		advised to set port 0 to improve the connection
		speed. If port 0 is used, the system randomly assigns
		a local port. The difference between this and
		non-zero port is: (1) When the local port is 0, a new
		TCP connection is established with the PC when the
		module restarts, and the old TCP connection may not
		be closed, and the device may have multiple fake
		connections. Generally, the host computer wants to
		close the old connection when the module restarts;
		Specifying a non-zero port closes the old connection.
		(2) If the local port is 0, the TCP connection takes a
		shorter time to re-establish.
		When the serial port server is in TCP client mode, it
		also acts as the TCP server to listen for incoming
		connections on the port. In this case, the local port
		number used by the TCP client to connect to the
		server is Port +1000.

_		
Working mode	TCP server mode, TCP	When set to TCP server, the serial server waits for
	client mode, UDP	the computer to connect. If TCP client is configured,
	mode, UDP multicast	the serial port server initiates a connection to the
	mode	network server specified by the destination IP
		address.
Subnet mask	For eg.: 255.255.255.0	The subnet mask must be the same as that of the
		local LAN.
Gateway	For eg.: 192.168.1.1	It must be the same as the local LAN gateway
Destination IP		In TCP client or UDP mode, data is sent to the
address or		computer indicated by the destination IP or domain
domain name		name.
Destination		In TCP client or UDP mode, data is sent to the
port		destination port of the destination IP address.
Baud rate	300、600、1200、2400、	Serial port baud rate
	4800 、 7200 、 9600 、	
	14400、19200、28800、	
	38400、57600、76800、	
	115200 、 230400 、	
	460800、921.6K	
Digit bits	5, 6, 7, 8, 9	
Check bits	None, Even, Odd, tag,	
	space	
Stop bits	1、2	
Flow control	No flow control, hard	Only available for RS232 serial port
	flow control CTS/RTS,	
	hard flow control	
	DTR/DCR, soft flow	
	control XON/XOFF	
DNS server		If the destination IP address is described by a domain
		name, enter the IP address of the DNS server. If the
		IP address mode is DHCP, you do not need to specify

		the DNS server. The DNS server automatically
		obtains the IP address from the DHCP server.
Destination	Static, dynamic	TCP client mode: In static destination mode, the
mode		device automatically restarts after five consecutive
		failed attempts to connect to the server.
Transfer	NONE , Modbus	NONE indicates that data is transmitted transparently
protocol	TCP<->RTU	from the serial port to the network. Modbus
	Real_COM、TELNET	TCP<->RTU will convert Modbus TCP protocol
		directly into RTU protocol, which is convenient to
		cooperate with Modbus TCP protocol; RealCOM is
		designed to be compatible with the older version of
		the REAL_COM protocol. It is a virtual serial port
		protocol. However, it is not necessary to select the
		RealCom protocol when using the virtual serial port.
		The TELNET protocol allows the network to log in
		to our device through TELNET to communicate with
		the serial port
Keepalive	0~255	Heartbeat interval. (1) If the value ranges from 1 to
timing time		255 and the device is in TCP client working mode,
		the device automatically sends TCP heartbeat
		packets at Keepalive intervals. This ensures the TCP
		validity of the link. If the value is set to 0, there is no
		TCP heartbeat. (2) If the value is set to 0 to 254, and
		the conversion protocol is REAL_COM, the device
		will send data with length 1 and content 0 at
		keepalive intervals to implement the heartbeat
		mechanism in the Realcom protocol. If the value is
		set to 255, there is no realcom heartbeat. (3) When
		the value is set to 0 to 254, if the device works on the
		TCP client, the device will send device parameters to
		the destination computer at keepalive intervals. If the

	nttp://www.	zimeu.com		
		value is set to 255, no parameter is sent, enabling		
		remote device management.		
Disconnected	0~255	In TCP client mode, when the connection fails, the		
reconnection		TCP connection is re-initiated to the computer at		
time		disconnection Reconnection time intervals. The		
		value ranges from 0 to 254 seconds. If the value is		
		set to 255, the reconnection is never performed. Note		
		that the first TCP connection (such as hardware		
		power-on, device restart through zlvircom software,		
		and no data light) is generally carried out		
		immediately, and only after the first connection fails		
		will it wait for the "disconnection reconnection time"		
		to try again, so the "disconnection reconnection		
		time" will not affect the normal connection		
		establishment time between the network and the		
		server.		
Web access	1~65535	Default is 80		
port				
Multicast		Under UDP multicast		
address				
Enable		When a TCP connection is established, the		
registration		registration packet is sent to the computer. The		
package		realcom protocol must be selected after the		
		registration package is enabled. TCP server and TCP		
		client modes are supported.		
Digit packet	1~1400	One of the serial port framing rules. Serial port		
length		server After receiving data of this length, the serial		
		port sends the received data to the network as one		
		frame.		
Packet interval	0~255	Serial frame rule 2. When the data received by the		
		serial port server stops for a period longer than the		

	specified per	eriod, the	received	data	is	sent	to	the
	network as a	frame.						

6.2.2 Usage method

First, power on the device and connect it to the network with an Ethernet cable. If the Modbus TCP method is adopted, please select the conversion protocol to Modbus TCP; otherwise, select "None". The network module of ZLAN6408I-AI-AO operates in TCP server mode, with port 502. The user software can control the device by connecting to this IP and port 502.

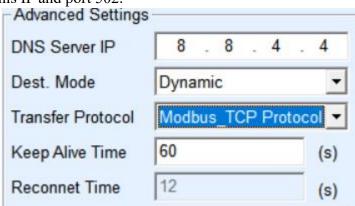


Figure 14 Enables the MODBUS TCP function

Appendix 1: General Parameter Table

The content of this chapter mainly involves the technical details of parameter setting and reading. It also helps users configure and modify parameters with their own software. For ordinary applications, you can skip this section.

The parameters related to reading and setting are listed separately from the register master table as follows.

	rable 5. I arameter related Reading Operations				
Function	Function		Address range		
code					
04	Read AI		0~3		
03	Read the	basic	63~67		
	parameters				

Table 3. Parameter-related Reading Operations

03	Read the extended	68~162
	parameter	
06	Set parameters	63~67
06	Set the extended	68~162
	parameters	
06	Set AO	768~771
16	Set basic parameters	63~67
16	Set the extended	68~162
	parameters	

It can be seen from the table that the parameters are read using the 03 function code and set using the 06 and 16 instructions. The parameters are divided into two parts: basic parameters and extended parameters, corresponding to registers 63 to 67 and 68 to 162 respectively.

Table 4. Basic Parameter Register 2

Register	Parameter name	Length	Instructions
address		(bytes)	
63(0x3F)	addr/Device address	1	The high byte of the register value
63(0x3F)	upLoad/The DI	1	The low byte of the register value,
	active reporting		1 indicates that it is enabled, and 2
	function is enabled		to 255 indicates that it is sent
			periodically.
64(0x40)	dst_addr/DI report	1	The high byte of the register value
	address		
64(0x40)	baud/Device baud	1	The low byte of the register value
	rate		sets only the baud rate of the
			485-IO RS485 interface.
			1200 0;
			2400 1;
			4800 2

			9600 3;
			19200 4;
			38400 5;
			57600 6;
			115200 7
65(0x41)	ver/Firmware	1	High byte of the register value,
	version		read only
65(0x41)	Compound	1	The low byte of the register value.
	parameter setting		Bit1:32-bit DI count save, 1
			indicates save
			Bit2: DI logical inversion. 1
			indicates inversion
			Bit3: DI delay function. After DI
			changes to 1, it keeps the value of
			1 for 2 seconds after DI input
			changes to 0, that is, it can still
			read DI as 1 within 2 seconds.
66(0x42)	A1UpLoadH/AI	1	The high byte of the register value
	Description The		
	report period is high		
	in bytes		
66(0x42)	A1UpLoadL/	1	The low byte of the register value
	AIDescription The		
	reporting period is		
	low bytes		
67(0x43)	A2UpLoadH/AI	1	The register value must be the
	Description The		same as the value of A1UpLoadH
	report period is high		
	in bytes		
67(0x43)	A2UpLoadL/	1	The low byte of the register value
	AIDescription The		must be the same as the value of

Tel:	(021)	64325	189

http://www.zlmcu.com

reporting period is	A1UpLoadL
low bytes	

Table 5. Extended Parameter Registers

Register address	Parameter name	Length (bytes)	Explanation (DO invalid)
68(0x44)	dostate/ DO configuration after power-on	1	The high byte of the register value, 0xF0, indicates the last 4 channels of pull-in
68(0x44)	checkb/ Check bit	1	The low byte of the register value. 0: No verification 1: Odd parity 2: Even check 3: Marking 4: Space
69(0x45)	baud_UART_0_2/ network communication and the baud rate of 485-4G	1	The high byte of the register value is currently read-only and is adaptive through the network module without the need for setting.
69(0x45)	datab/ Data bit	1	The low byte of the register value. It will be left for subsequent expansion.
70(0x46)	stopb/ Stop position	1	The high byte of the register value is reserved for subsequent expansion
70(0x46)	TCP_LINK_FLAG/ reserved	1	The low byte of the register value. It will be left for subsequent expansion.
71(0x47)	FirmwareType/	1	The high byte of the register

	Device type		value.
			0: 6002/6042
			1: 6808-1(6408-1)
			3: 6808-2, 6808-3, 6808-8,
			6808-7, 6808(6408-8)
			4: 6802/6842
			9: 6808-9
71(0x47)	DO hold time	1	The low byte of the register
			value. The duration for which
			the DO state is maintained.
72(0x48)	DI controls its own	1	The first bit of the high byte of
	DO		the register value (bit 0).
			1: Start
			0: Closed (Invalid)
72(0x48)	After power-on,	1	The second bit of the high byte
	maintain the DO		of the register value (bit 1).
	state before the last		1: Open; 0: Close
	power outage		
72(0x48)	The AI's active	1	The third bit (bit 2) of the high
	reporting has been		byte of the register value.
	changed to reporting		1: Open; 0: Close
	high-precision		
	values		
72(0x48)	There is no return	1	The fourth bit (bit 3) of the high
	instruction when		byte of the register value.
	writing "DO"		1: Open; 0: Close
72(0x48)	reserver/ Reserved	1	The low byte of the register
			value. It will be left for
			subsequent expansion.
73(0x49)	reserver/ Reserved	1	It will be left for subsequent
75(011.5)	reserver/ Reserved	2	It will be left for subsequent

_			
74~89	V1 to V8 are the	32	For big-endian format data,
$(0x4a\sim0x59)$	adjustment		please refer to the "AI
	coefficients for each		High-Precision Usage Chapter"
	path of the AI		for specific details.
90 (0x5a)	AI calibration status	2	1 indicates that it is in the AI
			calibration state
91~98	32-bit count	32	There are a total of 8 registers, 4
(0x5b~6a)			DI registers, and 2 registers for
			each.
107 (0x6b)	Single/multi-channel	2	Set whether DO1-DO8
	DO hold		single-lane/multi-lane is
			maintained
108~130	Reserved	46	There are 23 registers in total
(0x6c~82)			
131~162	The DI combination	32	There are a total of 16 registers
(0x83~a2)	controls the DO		
	logic		

After-sales service and technical support

Shanghai ZLAN Information Technology Co., LTD

Add: 2001, Jinyuan Center, No.28 Yuanwen Road, Minhang District, Shanghai

Tel:021-64325189

Fax:021-64325200

Website: http://www.zlmcu.com

Email: support@zlmcu.com